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Nonreciprocal radiative heat transfer between two planar bodies
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We study the consequence of breaking reciprocity within the context of near-field radiative heat transfer
between two planar bodies. Our findings introduce a thermodynamic constraint, which states that the heat
transferred from one planar body to another at each frequency and in-plane wave vector is unchanged upon
interchanging the two bodies, regardless of whether the materials are reciprocal or not. We further identify a
unique signature of nonreciprocity, which is the breaking of the symmetry of the heat flux density between
positive and negative in-plane wave vectors. We numerically demonstrate our findings in an example system
consisting of magneto-optical materials. Our formalism applies to both near- and far-field regimes, opening
opportunities for exploiting nonreciprocity in two-body radiative heat transfer systems.
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I. INTRODUCTION

Understanding radiative heat transfer [1–3] is essential
in many applications ranging from radiative cooling [4–6]
and thermal diodes [7] to thermal transistors [8–11] and
thermophotovoltaic systems [12–16]. The majority of works
investigating radiative heat transfer are limited to the materials
that satisfy Lorentz reciprocity [17–30], and consequently the
thermal emission and absorption are always equal according
to Kirchhoff’s law of thermal radiation [31]. The main char-
acteristic for such reciprocal heat transfer is that the heat flux
density map is symmetric for opposite in-plane wave vectors,
both in far-field and near-field regimes. On the other hand,
it is highly desirable to break the constraint of reciprocity in
heat transfer between two bodies, as this is the key to reach
thermodynamic limits in thermal radiation energy harvesting
[32–34]. Therefore, in recent years there has been emerging
interest in exploring radiative heat transfer with nonreciprocal
materials. Examples include the design of photonic structures
for complete violation of Kirchhoff’s law in far-field thermal
radiation [35,36], as well as the proposal for the thermal
Hall effect [37], and persistent heat current in equilibrium in
near-field heat transfer [38].

In an early paper [39], it was shown that the radiative heat
transfer between two bodies in thermal equilibrium (same
temperature) is symmetric even if the heat transfer is via a
two-port nonreciprocal system (Faraday rotator). This result
is equivalent to the lack of signature of nonreciprocity in this
case. In [38], it was shown that this detailed balance can be
violated for a nonreciprocal system, but it necessitates at least
three bodies to generate a persistent current loop to maintain
the equilibrium. In the current paper, we extend the results
of [38,39] and show that detailed balance of heat transfer
can be violated even between two bodies, provided that heat
exchange can occur in more than one channel. We formally
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prove and exemplify the result for heat transfer between two
homogeneous infinite slabs, but the general consequence is by
far more outreaching. For the two infinite slabs case, we show
that heat transfer between body 1 and body 2 can occur in one
channel while the inverse transfer occurs at a different one,
and thus constitutes a persistent current loop between the two
bodies. We show that the condition for this current loop is the
violation of Lorenz reciprocity.

Our analytical results pertain to both far-field and near-
field thermal radiation. We focus however on the near-field,
where bodies are separated by a vacuum gap smaller than
the thermal wavelength. The most studied geometry is that
between two planar bodies (Fig. 1). Nevertheless, previous
works on nonreciprocal near-field heat transfer have focused
on nonplanar geometries [38,40,41]. There has not been a
systematic study as to how nonreciprocity manifests itself
in planar systems. Reference [42] considered near-field heat
transfer between two planar structures incorporating magneto-
optical materials. However, it did not address the manifesta-
tion of nonreciprocity, but rather demonstrated magnetic-field
tuning of thermal radiation.

The paper is organized as follows: In Sec. II, we provide
a derivation of the formalism for computing radiative heat
transfer between two planar bodies. We place special em-
phasis on ensuring that it is applicable to both nonreciprocal
and reciprocal systems. Using this formalism, in Secs. III and
IV, we address how the second law of thermodynamics and
reciprocity constrains near-field heat transfer in planar ge-
ometries. We highlight the uniquely nonreciprocal aspects of
near-field heat transfer that cannot exist in reciprocal systems.
In Sec. V, we provide numerical demonstrations of the theo-
retical predictions in Secs. III and IV. We conclude in Sec. VI.

II. THEORETICAL FORMALISM

Throughout the paper, we consider the general heat trans-
fer setting as shown in Fig. 1. Body 1 and body 2 are
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FIG. 1. Schematic of the geometry under consideration: Two
semi-infinite planar slabs are separated by a vacuum gap of size d .
Each slab has an in-plane (xy) homogeneous dielectric permittivity,
which can be inhomogeneous in the z-direction, represented by the
dielectric permittivity tensors ε̂1(z), ε̂2(z). S1→2 and S2→1 represent
the radiative heat flux density from body 1 to 2 and body 2 to 1,
respectively.

semi-infinite, separated by vacuum with a gap size of d , and
maintained at temperatures T1 and T2, respectively. Body 1
and 2 are described by a dielectric permittivity distribution
ε̂1(z) and ε̂2(z), respectively, which are uniform in the in-
plane directions, but can be nonuniform along the z-direction.
In general, ε̂1(z), ε̂2(z) are 3 × 3 permittivity tensors. From
the fluctuation dissipation theorem [43], the strength of the
fluctuating current sources that generate thermal radiation is
proportional to the imaginary part of the permittivity tensor,
Im ε̂ ≡ 1

2 j (ε̂ − ε̂†).
First, we compute the heat flux density from body 1 to

body 2, S1→2(r‖, z, t ), which is defined as the absorbed power
density in body 2 from the electric and magnetic field vectors
E(r‖, z, t ) and H(r‖, z, t ) generated by the fluctuating current
sources in body 1, and r‖, z, and t , are, respectively, the
in-plane coordinate, distance along the vertical axis, and time.
In the vacuum region between the two planar bodies in Fig. 1,
the heat flux density from body 1 to 2, S1→2(r‖, z, t ) is equal
to the ensemble-averaged z component of the Poynting vector,
which is given by

S1→2(r‖, z, t ) = ẑ · 〈E(r‖, z, t ) × H(r‖, z, t )〉, (1)

where 〈· · · 〉 represents an ensemble average. Throughout the
paper, we adopt the following Fourier transformation conven-
tions in time and space, respectively,

A(t ) = Re
∫ ∞

0
dωA(ω)e jωt , (2)

A(r‖) =
∫

dk‖
(2π )2

A(k‖)e− jk‖·r‖ . (3)

S1→2(r‖, z, t ) is independent of r‖ by translational symmetry,
independent of t since the thermal process is a stationary
random process [44,45] and independent of z due to energy
conservation as there is no absorption in the vacuum gap.
Therefore, we have

〈E(k‖, z, ω) × H∗(k′
‖, z, ω′)〉

= 〈E(k‖, z, ω) × H∗(k‖, z, ω)〉δ(k‖ − k′
‖)δ(ω − ω′), (4)

FIG. 2. Theoretical framework for computing the heat transfer in
a two-body planar system using the generalized reciprocal relation.
(a) Thermal emission of body 1. Poynting vector from body 1 to 2;
S1→2(ω, k‖) is proportional to the electric field emission 〈E1E†

1〉 near
the source surface. (b) Heat exchange between bodies 1 and 2 via
multiple scattering process. Parts (c) and (d) illustrate the method to
compute the field emission from a planar body using the generalized
reciprocity relation. (c) The emission of body 1 can be equivalently
computed by evaluating the absorption of the complementary body
in the presence of the external source. (d) The absorption of the
complementary body as shown in (c) can be computed in terms of
its reflection coefficients.

where k‖, k′
‖ are the in-plane wave vector, and ω,ω′ are the

angular frequency. With these notations from Eqs. (1)–(4), we
obtain

S1→2 = 1

2
Re

∫ ∞

0
dω

∫
dk‖

(2π )4
ẑ · 〈E(k‖, z, ω) × H∗(k‖, z, ω)〉.

(5)

Below we treat each k‖, ω component separately at a fixed
z in the vacuum gap, and suppress the arguments of k‖, z,
and ω.

We aim to express the near-field heat transfer between the
two planar bodies, i.e., Eq. (5), in terms of the reflectivity
matrix of each body. For this, we start by considering the
electric field E1 as generated by body 1 in the absence of
body 2 [Fig. 2(a)]. For propagating waves, defined by k‖ < ω

c ,
where c is the speed of light in vacuum, immediately near the
surface of body 1, the emitted field correlation is expressed as

〈E1E†
1〉 = (2π )2 Z

π
�(ω, T1)[Î − R̂1R̂†

1], (6)

whereas for evanescent waves with k‖ > ω
c , we have

〈E1E†
1〉 = (2π )2 Z

π
�(ω, T1)[R̂1 − R̂†

1]. (7)

In the Appendix, we provide an analytical derivation of
Eqs. (6) and (7), based on the generalized reciprocity theorem
[46]. Z = diag(Zs, Zp), where Zs and Zp are the impedances
for s- and p-polarized waves, defined to have the electric field
or magnetic field parallel to the material interfaces, respec-
tively. The function �(ω, T ) is the mean energy of photons
per frequency ω at temperature T , defined as �(ω, T ) =
h̄ω[ 1

2 + 1
exp(h̄ω/kBT )−1 ]. Here, h̄ is the reduced Planck constant,
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and kB is the Boltzmann constant. The reflectivity matrix of
the ith body R̂i is given by

R̂i =
[

Rss
i Rsp

i

Rps
i Rpp

i

]
, (8)

where Rσμ
i represents the reflection coefficient for light in-

cident from vacuum into the ith body, with a μ-polarized
incident wave and a σ -polarized reflected wave.

In the presence of body 2, the electric field between the two
bodies, due to the thermal radiation from body 1, can be de-
composed into forward and backward components [Fig. 2(b)],
i.e., E = Ef + Eb, which can be related to E1 as

Ef = E1 + R̂1R̂2e− j2kzd E1 + (R̂1R̂2e− j2kzd )2E1 + · · ·
= D̂12E1, (9)

Eb = R̂2D̂12e− j2kzd E1 = D̂21R̂2e− j2kzd E1, (10)

where D̂mn = [Î − R̂mR̂ne− j2kzd ]−1 represents multiple reflec-
tions between the two bodies. In the alternative expression of
Eb, we have used the identity

R̂2D̂12 = D̂21R̂2. (11)

Representing electric and magnetic fields by Ef and Eb, the
averaged Poynting vector in Eq. (5) can then be written as

1
2 Re{ẑ · 〈E × H∗〉} = 1

2 Re Tr[(Ef + Eb)[Z−1(Ef − Eb)]†],

(12)

which holds for propagating as well as evanescent modes, and
Ef and Eb denote the forward and backward field components
on the s- and p-polarization basis. Note that the basis vector
for the p-polarization has opposite signs for forward and
backward waves. For propagating waves, Eq. (12) becomes

1

2
Re{ẑ · 〈

E × H∗〉} = Tr

[
1

2Z
(Î − R̂†

2R̂2)D̂12
〈
E1E†

1

〉
D̂†

12

]
, (13)

whereas for evanescent waves, Eq. (12) becomes

1

2
Re{ẑ · 〈

E × H∗〉} = Tr

[
1

2Z
(R̂†

2 − R̂2)D̂12
〈
E1E†

1

〉
D̂†

12e−2αd

]
.

(14)

In the latter case, the field components Ef and Eb denote
exponential decay and growth, respectively, along the z+-
direction, where kz = − jα, with α being the 1/e-penetration
depth of the evanescent wave.

Plugging Eq. (6) and Eq. (7) into Eqs. (13) and (14),
respectively, and by recalling Eq. (5), we obtain the total heat
flux density from body 1 to body 2:

S1→2 =
∫ ∞

0

dω

2π

∫
dk‖

(2π )2
�(ω, T1)S1→2(k‖, ω), (15)

where S1→2(k‖, ω) is given by

S1→2(k‖, ω) = Tr{[Î − R̂†
2(k‖, ω)R̂2(k‖, ω)]D̂12(k‖, ω)

× [Î − R̂1(k‖, ω)R̂†
1(k‖, ω)]D̂†

12(k‖, ω)} (16)

for propagating waves, and

S1→2(k‖, ω) = Tr{[R̂†
2(k‖, ω) − R̂2(k‖, ω)]D̂12(k‖, ω)

× [R̂1(k‖, ω) − R̂†
1(k‖, ω)]D̂†

12(k‖, ω)e−2αd},
(17)

for evanescent waves. The heat flux density from body 2 to
body 1 can be obtained from Eqs. (16) and (17) by exchang-
ing the subscripts 1 and 2 and changing the temperature in
Eq. (15) from T1 to T2. We note that the derivation above does
not assume reciprocity. This result is therefore generally ap-
plicable for either reciprocal or nonreciprocal systems. While
this result was obtained [42] by integrating thermal sources in
the emitting medium, here we show that it is a consequence of
the generalized reciprocity theorem, which provides a direct
relation between the scattering coefficients and the emissivity.
Such an application of the generalized reciprocity theorem
was not explicitly noted for nonreciprocal thermal emitters
previously in the literature.

III. CONSTRAINT FROM THE SECOND LAW OF
THERMODYNAMICS

In this section, we show that Eqs. (16) and (17) satisfy the
second law of thermodynamics by showing that the heat flux
from body 1 to body 2 is balanced with the heat flux from body
2 to body 1, at each frequency ω, and in-plane wave vector k‖,
i.e.,

S1→2(k‖, ω) = S2→1(k‖, ω). (18)

We start by providing a direct proof of Eq. (18) from
Eqs. (16) and (17). For this purpose, we first state a few
mathematical observations: We recall Eq. (11) above as well
as the analogous relation:

R̂1D̂21 = D̂12R̂1. (19)

By expanding D̂12, D̂21 in series, we note that

D̂12 = Î + R̂1D̂21R̂2e− j2kzd , (20)

D̂21 = Î + R̂2D̂12R̂1e− j2kzd . (21)

First, we consider the case of propagating waves. The heat
flux S1→2(k‖, ω) can be written as the sum of four terms, i.e.,

S1→2(k‖, ω) = Z1 + Z2 + Z3 + Z4, (22)

where

Z1 = − Tr[R̂†
2R̂2D̂12D̂†

12] = − Tr[R̂2D̂12D̂†
12R̂†

2], (23)

Z2 = − Tr[D̂12R̂1R̂†
1D̂†

12] = − Tr[R̂1D̂21D̂†
21R̂†

1]. (24)

From Eqs. (23) and (24), it can be shown that Z1 + Z2 is
symmetric with respect to exchanging the subscripts 1 and 2.
Furthermore, for the last two terms in Eq. (22), we can write

Z3 = Tr[D̂12D̂†
12] = Tr[Î + R̂1D̂21R̂2(R̂1D̂21R̂2)†]

+ Tr[R̂1D̂21R̂2e− j2kzd ] + Tr[R̂1D̂21R̂2e− j2kzd ]†, (25)

Z4 = Tr[R̂†
2R̂2D̂12R̂1R̂†

1D̂†
12] = Tr[R̂2D̂12R̂1(R̂2D̂12R̂1)†]. (26)
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From Eqs. (25) and (26), Z3 + Z4 is also symmetric with
respect to the subscript exchange between bodies 1 and 2.
This can be seen by applying Tr [R̂1D̂21R̂2] = Tr [R̂2D̂12R̂1]
as derived from Eqs. (11) and (19). This proves Eq. (18) for
propagating waves.

We now consider the case of evanescent waves, and we
write S1→2(k‖, ω) as a sum of four terms [Eq. (22)], where

Z1 = Tr[R̂†
2D̂12R̂1D̂†

12]e−2αd

= Tr[D̂12R̂1(R̂2D̂12)†]e−2αd , (27)

Z2 = Tr[R̂2D̂12R̂†
1D̂†

12]e−2αd

= Tr[D̂21R̂2(R̂1D̂21)†]e−2αd . (28)

From Eqs. (27) and (28), Z1 + Z2 remains symmetric with
respect to the exchange between bodies 1 and 2. Furthermore,

Z3 = Tr[−R̂2D̂12R̂1D̂†
12]e−2αd = Tr[−D̂21D̂†

12 + D̂†
12], (29)

Z4 = Tr[−R̂†
2D̂12R̂†

1D̂†
12]e−2αd = Tr[−D̂12D̂†

21 + D̂12]. (30)

It can therefore be seen that Z3 + Z4 is also symmetric with
respect to exchanging bodies 1 and 2, using Tr D̂12 = Tr D̂21

via Eqs. (20) and (21). This proves Eq. (18) at every frequency
ω and in-plane wave vector k‖ of evanescent waves. For
a system where heat transfer occurs entirely between two
bodies, in thermal equilibrium, the net heat flow between the
two must be zero as dictated by the second law of thermo-
dynamics, independent of whether the system is reciprocal or
not [39]. Thus, we have proven here that Eqs. (16) and (17)
obey the second law of thermodynamics, even in the presence
of nonreciprocity. Furthermore, Eq. (18) represents a general
constraint on the heat transfer between two planar bodies,
which must be satisfied in both reciprocal and nonreciprocal
systems.

IV. CONSTRAINT FROM RECIPROCITY

In this section, we show that in reciprocal systems, i.e., sys-
tems where both planar bodies consist of reciprocal materials,
an additional constraint arises:

S1→2(k‖, ω) = S2→1(−k‖, ω). (31)

To prove Eq. (31), we start by observing that the scattering
matrix of a reciprocal system is symmetric [47]. Hence, its
reflectivity matrix satisfies

R̂i(−k‖) = σ̂zR̂T
i (k‖)σ̂z, (32)

where σ̂z = diag[1,−1]. Note that the matrix σ̂z appears be-
cause the electric field components for the p-polarization ac-
quire opposite signs for k‖ and −k‖. Henceforth, the argument
ω is suppressed for brevity since the derivation applies to each
frequency separately. From Eq. (32), we have D̂12(−k‖) =
σ̂zD̂T

21(k‖)σ̂z, as can be proved by inspecting D̂12 and D̂21 in
the form of its series expansion.

Similar to the treatment in the previous section, we first
consider propagating waves, for which

S1→2(−k‖) = Tr
{
σ̂z

[
Î − R̂∗

2(k‖)R̂T
2 (k‖)

]
D̂T

21(k‖)

× [
Î − R̂T

1 (k‖)R̂∗
1(k‖)

]
D̂∗

21(k‖)σ̂z
}

= Tr
{[

Î − R̂†
1(k‖)R̂1(k‖)

]
D̂21(k‖)

× [Î − R̂2(k‖)R̂†
2(k‖)]D̂†

21(k‖)
}

= S2→1(k‖). (33)

Similarly, for evanescent waves, the following holds:

S1→2(−k‖) = Tr
{
σ̂z

[
R̂∗

2(k‖) − R̂T
2 (k‖)

]
D̂T

21(k‖)

× [
R̂T

1 (k‖) − R̂∗
1(k‖)

]
D̂∗

21(k‖)σ̂ze−2αd
}

= Tr{[R̂†
1(k‖) − R̂1(k‖)]D̂21(k‖)

× [R̂2(k‖) − R̂†
2(k‖)]D̂†

21(k‖)e−2αd}
= S2→1(k‖). (34)

Hence, for any system consisting of two planar bodies,
if Eq. (31) is violated, then Eq. (32) must also be violated
for at least one of the bodies. Thus, at least one of the
bodies must consist of a nonreciprocal material. Therefore, the
violation of Eq. (31) is a uniquely nonreciprocal effect in heat
transfer between planar bodies. We can refer to the violation
of Eq. (31) as a definition of nonreciprocal heat transfer
for planar systems. It should be noted that the incorporation
of nonreciprocal media in the system does not necessarily
lead to nonreciprocal heat transfer [42]. Namely, satisfying
Eq. (31) does not guarantee that the underlying system is
reciprocal. One can construct systems in which the reflectivity
matrix of each individual body violates Eq. (32), and hence
each individual body is nonreciprocal, but the resulting heat
transfer is reciprocal—satisfying Eq. (31). We provide such
an example in the numerical demonstration section below.

V. NUMERICAL DEMONSTRATIONS

In this section, we numerically demonstrate the findings of
the previous sections. We perform numerical calculations of
heat transfer between two planar slabs based on the formalism
provided above. First, we consider a reciprocal system con-
sisting of two planar slabs of reciprocal materials, as shown
in Fig. 3(a). We set body 1 to have an isotropic dielectric
permittivity, ε̂1 = εp, where εp is the dielectric function of a
plasmonic metal that takes the Drude model form εp = 1 −

ω2
p

ω(ω+ j/τ ) . ωp is the plasma frequency, and 1/τ = 0.1ωp char-
acterizes the plasmonic scattering rate. We choose the permit-
tivity of the second body to be anisotropic and have the form

ε̂S
2 (ω) =

⎡
⎣εp 0 0

0 εd εf

0 εf εd

⎤
⎦, (35)

with εd = 1 − ω2
p (1+ j 1

τω
)

(ω+ j/τ )2−ω2
B

, εf = −ωB
ω

ω2
p

(ω+ j/τ )2−ω2
B

. Here, ωB =
eB
m is chosen to be ωB = 0.2ωp, where e is the electron charge,
m is the electron mass, and B is the external magnetic field
directed along the x-axis. The permittivity form of Eq. (35) is
chosen to facilitate the comparison to the nonreciprocal case,
as we will show below. This form resembles the permittivity
of a magnetized plasma, except that the permittivity tensor is
symmetric and hence the material is reciprocal. We define the
plasma wavelength λp = 2πc/ωp, and we set the thickness of
both slabs as ds = λp. The width of the vacuum gap between
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FIG. 3. Numerical simulations of heat transfer between two planar bodies at each frequency ω and in-plane wave vector k‖ along the
y-axis. Body 1 is an isotropic plasmonic medium in panels (a)–(f), and a magneto-optical material with an asymmetric permittivity tensor [ε̂A

2

in Eq. (36)] in panels (g)–(i). Body 2 is an anisotropic material with a symmetric dielectric permittivity tensor [ε̂S
2 in Eq. (35)] in panels (a)–(c),

and a magneto-optical material with ε̂A
2 [Eq. (36)] in panels (d)–(i). The thickness of the slabs is set to dS = λp, whereas the vacuum gap has a

width of d = 0.1λp, where λp is the bulk plasma wavelength. Panels (b), (e), and (h) represent the heat flux density from body 1 to 2, i.e., S1→2.
Panels (c), (f), and (i) represent the heat flux density from body 2 to 1, i.e., S2→1. Panels (e) and (f) demonstrate the violation of reciprocity
constraint for heat transfer, i.e., Eq. (31), whereas panels (b),(c) and (h),(i) satisfy Eq. (31). All results agree with the general thermodynamic
constraint of Eq. (18).

two slabs is set to be d = λp/10 for probing near-field effects.
To remove the effect of any bulk free-space propagating
modes that occur at high frequencies, we place a perfect
electric conductor (PEC) on the back side of both slabs.

Based on the formalism described in Sec. II, we com-
pute the radiative heat transfer between these two bodies
for the in-plane wave vector k‖ along the y-direction, as
shown in Figs. 3(b) and 3(c), corresponding to S1→2(k‖, ω)
and S2→1(k‖, ω), respectively. We see that S1→2(k‖, ω) =
S1→2(−k‖, ω), as expected for a reciprocal system [Eq. (31)].
Furthermore, at each frequency and in-plane wave vector, we
have S1→2(k‖, ω) = S2→1(k‖, ω), confirming the validity of
Eq. (18). We emphasize that these constraints are satisfied
despite the lack of any mirror symmetry in the system. Bodies
1 and 2 are made of different materials, and moreover the
permittivity of body 2 is chosen to be anisotropic such that
different k‖ are not equivalent. Next, we study a nonreciprocal
case, where Eq. (31) is violated. We consider a system where
body 1 remains the same as in the previous example, however
body 2 has a permittivity tensor of the form [Fig. 3(d)]

ε̂A
2 (ω) =

⎡
⎣εp 0 0

0 εd jεf

0 − jεf εd

⎤
⎦. (36)

This permittivity tensor is asymmetric, thus breaking Lorentz
reciprocity. The heat transfer spectra for this system are
shown in Figs. 3(e) and 3(f). We see here that S1→2(k‖, ω) 
=
S1→2(−k‖, ω). Hence, based on the discussions in Sec. IV,
we have shown that this system can achieve nonreciprocal
near-field heat transfer in a planar geometry. This system,
therefore, demonstrates a unique signature of nonreciprocity
in the context of near-field heat transfer, as defined in the
Introduction. Furthermore, by comparing Figs. 3(e) and 3(f),
we see that S1→2(k‖, ω) = S2→1(k‖, ω) for all frequencies ω

and in-plane wave vectors k‖, in consistency with Eq. (18).
This numerical example demonstrates that Eq. (18) is satisfied
despite the lack of both reciprocity and mirror symmetry in the
considered system.

Finally, we consider a nonreciprocal case, which demon-
strates that even in the presence of nonreciprocity, Eq. (31)
can hold. Hence, we set both bodies to have the permit-
tivity tensor of Eq. (36). In this case, the signature of
nonreciprocity by each individual body is canceled out via
their combination. Consequently, we have S1→2(k‖, ω) =
S1→2(−k‖, ω) despite the fact that the response for each
individual body is nonreciprocal. Furthermore, similar to
the previous cases, the constraint S1→2(k‖, ω) = S2→1(k‖, ω)
is preserved since Fig. 3(h) is identical to Fig. 3(i),
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once again verifying the general thermodynamic constraint
Eq. (18).

The fluctuation dissipation theorem, as the theoretical basis
for the formalism and numerical results given above, is known
to agree with recent experiments [4,15,48–52], therefore
demonstrating that geometrical and material imperfections
[53] can be mitigated in near-field heat transfer. Potential ex-
perimental measurements of the nonreciprocity signature on
the heat transfer could be facilitated since this signature trans-
lates into the symmetry breaking of the heat transfer function
[Figs. 3(d) and 3(e)], which is measurable in principle. In
the far-field, measuring the angular-spectral distribution of
the heat flux uses configurations such as the Fourier optics
setup [54–56]. In the near-field, such measurements are more
involved, but significant steps toward their realization are in
rapid progress (e.g., [57]).

To conclude this section, we provided a numerical demon-
stration showing that Eq. (18) holds both in reciprocal
[Fig. 3(a)] and nonreciprocal systems [Figs. 3(d) and 3(g)].
Furthermore, we showed that the generalized detailed balance
[Eq. (31)] holds for reciprocal systems, and the violation
of Eq. (31) can only be achieved in nonreciprocal systems.
Finally, we demonstrated a case in which Eq. (31) holds even
when the underlying bodies are nonreciprocal.

VI. CONCLUSION

We presented a formalism for computing radiative heat
transfer between two planar bodies. This formalism is ap-
plicable for both reciprocal and nonreciprocal systems. We
introduced a constraint imposed by the second law of ther-
modynamics and reciprocity that holds at every in-plane wave
vector and frequency [Eq. (18)]. Our formalism identifies
the unique signature of nonreciprocity in heat transfer in
two-body planar systems, in terms of breaking the symme-
try between opposite-sign in-plane wave vectors in thermal
transport [Figs. 3(e) and 3(f)].
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APPENDIX

In this Appendix, we provide proof of Eqs. (6) and (7)
presented in the main text regarding the fields emitted by
a single planar body, based on the generalized reciprocity
theorem. Equations (6) and (7) have been previously proven
in Refs. [58–61] by using the second fluctuation-dissipation
theorem, which directly relates the field emission to the imag-
inary part of the Green’s function. The proof of Refs. [58–61]
applies to both reciprocal and nonreciprocal systems. Here,
we provide an alternative proof based entirely on the cur-
rent correlation. This proof facilitates the understanding

of the differences between reciprocal and nonreciprocal
systems.

We first summarize a few relations in electromagnetics
that we will use below, applicable to reciprocal as well as
nonreciprocal systems. For simplicity, for both theorems dis-
cussed below, we consider a nonmagnetic (μ = μ0) system,
described by relative dielectric permittivity ε̂.

Theorem 1. Conservation of energy. Let us consider a
system that has two steady-state solutions as described by
electric fields Eσ and Eμ. At each frequency ω, we have∫

dV ωε0E∗
σ ·

[
ε̂ − ε̂†

2 j

]
Eμ

= −1

2

∫
dSn̂ · (E∗

σ × Hμ + Eμ × H∗
σ ). (A1)

The proof of Eq. (A1) can be found in Ref. [62]. In the
geometry of Fig. 2(a), where body 1 occupies the half-space
z < 0, suppose that the fields Eσ (z)e− jk‖·r‖ , Hσ (z)e− jk‖·r‖ and
Eμ(z)e− jk‖·r‖ , Hμ(z)e− jk‖·r‖ are solutions to Maxwell’s equa-
tions at the in-plane wave vector k‖. Then, Eq. (A1) becomes∫ 0

−∞
dz ωε0E∗

σ ·
[
ε̂ − ε̂†

2 j

]
Eμ

= −1

2
(E∗

σ × Hμ + Eμ × H∗
σ ) · ẑ |z=0+ . (A2)

Theorem 2. Generalized reciprocity theorem. For non-
magnetic systems, the electric field E can be obtained by
solving the equation ∇ × ∇ × E − k2

0 ε̂E = − jωμ0J, where
k0 = ω/c and J is the current density. The Green’s function
for this system is defined by

∇ × ∇ × G − k2
0 ε̂G = Iδ(r − r′), (A3)

where I is the identity dyad. The generalized reciprocity
theorem states

G̃(r′, r) = GT (r, r′), (A4)

where G̃ is the Green’s function of its complementary system
described by a permittivity of ε̂T . For reciprocal systems, ε̂ =
ε̂T , and hence G(r′, r) = GT (r, r′). The proof of Eq. (A4)
closely parallels the standard proof in reciprocal systems, and
can be found in Ref. [46].

Next, we consider the field emission in Eqs. (6) and (7). For
the system shown in Fig. 2, by taking the Fourier transform of
G̃ and G, we obtain

G̃(k‖, z′, z0) = GT (−k‖, z0, z′). (A5)

For the system shown in Fig. 2(a), we calculate the elec-
tric field emission of E1(k‖, z, ω) near the surface z = 0+ ≡
z0. Using the relation E(r) = − jωμ0

∫
dr′G(r, r′) · J(r′), as

well as the fluctuation dissipation theorem [2], which takes the
following form:〈

J(k‖, ω, z)J†(k′, ω, z′)
〉

= (2π )2 4

π
ωε0�(ω, T )

[
ε̂ − ε̂†

2 j

]
δ(k‖ − k′

‖)δ(z − z′),

(A6)
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we obtain the electric field emission in Eqs. (6) and (7) in the
following form:

〈E1E†
1〉

= (ωμ0)2
∫

dz′
∫

dz′′G(k‖, z0, z′)

× 〈
J(k‖, ω, z′)J†(k‖, ω, z′′)

〉
G†(k‖, z0, z′′)

= (2π )2 4

π
�(ω, T )(ωμ0)2

×
∫ 0

−∞
dz′ωε0G(k‖, z0, z′)

[
ε̂ − ε̂†

2 j

]
G†(k‖, z0, z′)

= (2π )2 4

π
�(ω, T )(ωμ0)2

×
[∫ 0

−∞
dz′ωε0G̃†(−k‖, z′, z0)

[
ε̃ − ε̃†

2 j

]
G̃(−k‖, z′, z0)

]T

,

(A7)

where in the last step we have used generalized reciprocity
as described in Eq. (A5). Here, the electric field E1 is
expressed as E1 = E1ss + E1pp+, where s and p+ are the
polarization unit vectors for the s- and p-polarized reflected
waves, in consistency with the definition of the reflectivity
matrix in Eq. (8). For subsequent use, we also define p−
as the unit polarization vector for the incoming p-polarized
wave.

The Green’s function G̃(−k‖, z′, z0) for the complemen-
tary system ε̃ = ε̂T takes the dyadic form G̃(−k‖, z′, z0) =

1
− jωμ0

[Ẽss̃ + Ẽpp̃−]. Here, Ẽs,p stand for the electric field at
z′, generated from s- or p-polarized current source at z0 with
unit amplitude in the complementary system. We define the
polarization basis vectors s̃, p̃+, p̃− equivalently to s, p+, p−,
but for the in-plane wave vector −k‖. The polarization basis
vectors are connected via s̃ = −s, p̃+ = p−, p̃− = p+. In
terms of the polarization basis s̃ and p̃−, Eq. (A7) is expanded
into four terms:

〈E1E†
1〉 = (2π )2 4

π
�(ω, T )(Fsss̃s̃† + Fspp̃−s̃† + Fpss̃p̃†

−

+ Fppp̃−p̃†
−), (A8)

where

Fσμ =
∫ 0

−∞
dz′ωε0Ẽ∗

σ ·
[
ε̂ − ε̂†

2 j

]
Ẽμ

= −1

2
(Ẽ∗

σ × H̃μ + Ẽμ × H̃∗
σ ) · ẑ |z=z0 . (A9)

On the other hand, Ẽs = −ωμ0

2kz
[(1 + R̃ss

1 )s̃ + R̃ps
1 p̃+], Ẽp =

−ωμ0

2kz
[R̃sp

1 s̃ + p̃− + R̃pp
1 p̃+] are the electric fields near the

surface z = z0 ≡ 0+. The magnetic fields can be com-
puted to be Hs = − k0

2kz
[−p̃− − R̃ss

1 p̃+ + R̃ps
1 s̃] and Hp =

− k0
2kz

[−R̃sp
1 p̃+ + s̃ + R̃pp

1 s̃]. By evaluating the right-hand side
of Eq. (A9), we obtain the following relation for propagating
waves:

4F/Z = (
1 − ∣∣R̃ss

1

∣∣2−∣∣R̃ps
1

∣∣2)
ss† + (

R̃sp∗
1 R̃ss

1 + R̃ps
1 R̃pp∗

1

)
sp†

+

+ (
R̃sp

1 R̃ss∗
1 + R̃ps∗

1 R̃pp
1

)
p+s†

+ (
1 − ∣∣R̃pp

1

∣∣2−∣∣R̃sp
1

∣∣2)
p+p†

+, (A10)

whereas for evanescent waves, we have

4F/Z = (
R̃ss

1 − R̃ss∗
1

)
ss† − (

R̃sp∗
1 − R̃ps

1

)
sp†

+

− (
R̃sp

1 − R̃ps∗
1

)
p+s† + (

R̃pp
1 − R̃pp∗

1

)
p+p†

+. (A11)

Here, the reflectivity matrix R̃1 corresponds to the comple-
mentary system with ε̃ at the in-plane vector −k‖, in the
form of Eq. (8). We also note that Z = diag[Zs, Zp], Zs =
Zp = Z0

k0
kz

, and Z0 =
√

μ0

ε0
is the impedance in vacuum. The

reflectivity matrix R̂1 of the original system with ε̂ at k‖ is
related to R̃1 in the complementary system with ε̃ at −k‖
via R̃1(−k‖) = σ̂zR̂T

1 (k‖)σ̂z, as can be proved via symmetry
by rotating the coordinate axes to transform the dielectric
permittivity tensor [47]. Also, by recalling that R̂1 = Rss

1 ss +
Rsp

1 sp+ + Rps
1 p−s + Rpp

1 p−p+, we express the field emission
in Eq. (A8) as

〈E1E†
1〉 = (2π )2 Z

π
�(ω, T1)

×
{

[Î − R̂1R̂†
1], propagating waves,

[R̂1 − R̂†
1], evanescent waves.

(A12)

We note that the derivation above does not use reciprocity,
and hence is applicable to both reciprocal and nonreciprocal
systems.
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